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bered curves. This explains why only the lower ordered leaky
poles are important for a thin slab when the steepest descent
path is adopted, A comparison of Fig. 2, which shows the
steepest descent paths for various observation angles, with Figs.
4 to 7 demonstrates that many leaky wave poles can be captured
by the deformation, depending on the observation angle and
physical parameters of the slab. The residues of the leaky wave
poles are highly attenuated in the far field, as claimed by Fang
and Chow [4]. In fact, they completely ignored the residues of
the leaky poles for separation distance kyr > 27 and observa-
tion angle 8 = /2, i.e., on the interface. However, it is clear
from [15] that for some values of the dielectric constant and
height, the closeness of the leaky wave poles to the steepest
descent path must still be taken into account, even for k,r =100
and 0 < 8 <1 /2. Although the physical parameters employed in
[4] and [15] are different, our purpose is to emphasize that care
must be taken when ignoring the residues of the leaky wave
poles. Moreover, without knowing the locations or the loci of
the leaky wave poles, this cannot be done satisfactorily.

III. CoNcLUDING REMARKS

A simple numerical procedure for finding the loci of TE and
TM leaky wave poles as the frequency or the thickness of the
slab varies is presented. These loci provide important informa-
tion when the integration path of the Sommerfeld integral
for the grounded dielectric slab problem is deformed into the
“improper” sheet of the Riemann surface. The accuracy of the
loci has been checked extensively against contour plots of ex-
pressions (1) and (2) with the B’s as parameters.
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Dispersion Characteristics of Strip
Dielectric Waveguides

Kin S. Chiang

Abstract —A simple and accurate dispersion relation is derived for the
guided modes of a strip dielectric waveguide. This relation shows explic-
itly the effect of the width of the waveguide and involves only the
solution for a single three-layer slab waveguide. It is discovered that
there always exists a strip waveguide with a specific aspect ratio in
which the E} and E} modes propagate at the same phase velocity.

I. INTRODUCTION

A strip dielectric waveguide of the type shown in Fig. 1(a) is a
basic and important wave-guiding structure and serves as a
building block in many transmission devices at millimeter-wave
and optical frequencies [1]-[4]. While exact analytical solutions
are not available, this waveguide has been analyzed by various
semianalytical and numerical methods, which include the effec-
tive-index method [1], [2], [5], [6], Marcatili’s method [7], the
mode-matching method [8], the finite-element method [9], [10],
the finite-difference method [11], [12], and the weighted-index
method [13]. However, many of these methods [8]-[13] require
massive computation and the physical properties of the wave-
guide are not apparent in such analyses.

In this paper a simple approximate expression is derived to
describe explicitly the dispersion characteristics of the guided
modes of a strip waveguide. The accuracy of this expression is
confirmed by comparison with results from other methods. The
use of this expression should significantly simplify the study and
design of strip waveguides.

II. ANALYSIS AND RESULTS

We consider the embossed wave-guiding structure as shown in
Fig. 1(a), which is commonly referred to as a strip waveguide, an
insulated image guide, or a special type of rib waveguide. We
adopt here the optics terminology by denoting #4, n,, and nj
(ny>n,> ny) as the refractive indexes of the strip, the sub-
strate, and the superstrate (usually air), respectively. The strip
has a height 2b and a width 2a and the substrate and the
superstrate are assumed unbounded. The guided mode of such a
waveguide can be designated as the E, , mode, which has a
predominant electric field component in the i (i=x or y)
direction with m —1 and n—1 (m,n > 1) field zeros in the x
and y directions, respectively. The refractive-index profile of the
waveguide is characterized by two relative refractive-index steps,
A, and A,, defined by

o (1)
! an
and
n? —n?
A, = 2
2 Zn% ( )
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Fig. 1. Cross-sections of (a) a strip waveguide, (b) a metal-clad wave-

-guide, and (c) a three-layer slab waveguide.

In practice, the refractive-index difference between the strip and
the substrate is much smaller than that between the strip and
the superstrate, i.e., A, > A,. The cutoff mode index (the mode
index being the propagation constant of the mode divided by the
free-space wavenumber) is set by the refractive index of the
substrate. The mode field is well confined in the x direction

even near cutoff, where the field penetrates significantly only

into the substrate. The predominant transverse electric field, zpl,
of the E!, .. mode of the strip waveguide can thus be approxi-
mated by d;l, the field of the E’,, mode of a metal-clad wave-
guide, shown in Fig. 1(b), which is obtained by replacing the
areas at both sides of the strip with metal in which the field

vanishes:

- mmx .
p(x,y) =d(x,y) =sin 27; P(y),

0gsx<2a, —o<y<+ow,

(3)

Here ,(y) is the transverse electric field of the TE,_; (i = x)

or TM,,_; (i =y) mode of a three-layer slab waveguide with a
thickness 2b, as shown in Fig. 1(c).

The strip waveguide is now treated as a perturbation of the
metal-clad waveguide. A perturbation formula relating the prop-
agation constants of two waveguides has been derived [14]. In

our context, it is given by

tx® 9, o,

[ I G
IR +& 400 .
f o f " Y\ dx dy

where B, and L{- are the propagation constants of the E.
modes of the strip waveguide and the metal-clad waveguide,
respectively. In deriving (4), the boundary condition ¢,(0, y) =
$;2a, y) =0 is used and the orthogonal transverse field compo-
nents are neglected

Although (3) is accurate for 0 < x < 24, it gives a zero value
of ; at x =0 and x = 24, which is not accurate enough for the
evaluation of (4). Since A,>> A, the field in the superstrate
decays exponentially from the core—superstrate boundary ac-
cording to exp[ —(V /b)A, /A )V?r], where V is defined by (6)
(see below) and r is the distance from the boundary. When the
field is parallel to the boundary, the normal field gradient is
continuous across the boundary. When the field is perpendicular
to the boundary, however, it is the normal field gradient divided
by the square of the refractive index that is continuous. For both
cases, we can find the field value at the boundary from the
normal field gradient evaluated in the core near the boundary:

9:(0,9) = (-1)" 14,24, y)

b (A2 89, Lo
Vs, T x=0( —24,5)

BE=BE+ (4)

mub (A \? .
= 2av VAL (1-24,5)¥:(y) (%)
2
with
V=bk(nf~n§)1/2. (6)

V is the normalized frequency, k the,free-space wavenumber,
and the factor 1—2A,S; discriminates between the continuity
conditions across the boundary for the two polarizations . for
which §, =1 and §, = 0. Strictly speaking, (5) is -accurate only
when 0 < y < 400, For the sake of simplicity, we assume that (5)
is also valid when —o < y < 0. Putting (3) and (5) into (4), we
find
m27T2 Al 12 ‘

(_‘) (1—2A2Si)' (7)

A,

2 52
Bi - Bi + 2a3V
The propagation constant of the E’, mode of the metal-clad
waveguide can be solved exactly by separation of variables:

m??

52 22

—— Fland 8

Bz Bz 402 ( )
where §, is the propagation constant of the TE, _, (i=x) or
TM, _, (i =y) mode of the three-layer slab waveguide in Fig.

“1(c). Substituting (8) into (7), we obtain

2 g T s . 1-2A,5,) (9)
Bl =B 442 av\ A, ( 29 ) |- -

This is the desired expression for the dispersion characteristics
of the strip waveguide. The polarization effects associated with
the modes are fully taken into account in' (9), which can be
regarded as an approximate solution for the vector wave equa-
tion. When f,=g, and §,=0 are used, (9) represents the
dispersion relation for the scalar modes, which satisfy the scalar
wave equation.

According to (9), we need to use only the well-known disper-
sion characteristics of a three-layer slab waveguide to determine
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the dispersion characteristics of the strip waveguide. Of course,
the significance of (9) is not just the provision of an efficient way
of calculating the propagation constants for the strip waveguide.
The important property of (9) is that the effects of the first
mode order, m, and the strip width, 2a, are explicitly given. This
property makes (9) particularly useful in waveguide optimiza-
tion, since the width of the waveguide can be easily tailored to
suit a particular application.

In general the E;,,, and E},, modes of a strip waveguide have
different propagation constants; their difference is usually
termed the modal birefringence. The condition for the model
birefringence to vanish can be immediately obtained from (9):

o . mPmib(A,A,)Y2
Bf—ﬁ§=_——f;$7———~ (10)

Since the propagation constant of the TE, _; mode of a three-
layer slab waveguide is always larger than that of the TM,,_,
mode, ie., B, > B,, there always exists an aspect ratio a /b for
the strip such that (10) is satisfied. To find this particular aspect
ratio, (10) can be rearranged as

1/3
a | mPw2(4,4,)

22 )

b | vV(B-53)
The required aspect ratio can thus be calculated from (11) for a
given value of V, provided that 1/ is larger than the cutoff values
for both the E;,, and E},, modes of the strip waveguide. To
estimate the magnitude of the required aspect ratio, we derive
an asymptotic expression for 7 — B by treating the three-layer
slab waveguide in Fig. 1(c) as a perturbation of a metal-clad slab
waveguide by replacing the superstrate with metal. Following
steps similar to those that led to (7), we obtain

o mPTE(AA)Y?
B;“%:T (12)

It should be noted that ¥ — +o and A, /A, — +« have been
assumed in the derivation; consequently, (12) is accurate only
when V and A, /A, are large. Putting (12) into (11), we find

a L 2/3
= =2 ( - ) . (13)
This result is independent of ¥ and A, /A, provided that they
are sufficiently large. In the case of the fundamental mode, i.e.,
m=n=1, we have a/b=22=1.26. To the 'author’s knowl-
edge, this property of the strip waveguide, namely that the E,.,
and E}, modes become degenerate with a particular aspect
ratio, has not been previously discussed. Polarization-insensitive
devices which require phase matching to be satisfied by both
polarized modes can thus be constructed from isotropic strip
waveguides.

(11)

III. NuMEeRIicAL ExAaMPLES

To confirm the accuracy of (9), a semiconductor strip wave-
guide with 2a=3 um, 2b=1 pum, n,=3.44, n,=3.40, and
ny=1.0 [10], [12], [13] operated at A =1.15 pum (corresponding
to V' =1.42893) is analyzed. The normalized propagation con-
stant P2, defined by P? =[(B, / k)* — n$)]/(n} — n3), calculated
from (9) is compared with those obtained from the effective-
index method [1], [2], [5], [6], Marcatili’s method [7], and the
finite-difference method [12]. The results are presented in Table
I for the Ef, E{;, and E; (scalar) modes. As clearly shown by
the data in Table I, the agreement between the results from the
various methods is excellent. Equation (9) is accurate not only
for the calculation of propagation constants but also for the
calculation of modal birefringence. It has been shown both
numerically [5] and analytically [15] that the effective-index
method is highly accurate for a strip waveguide. The finite-dif-
ference solutions [12] in Table I are probably the poorest. The

351

TABLE 1
NORMALIZED PROPAGATION CONSTANT P2 CALCULATED BY
Various METHODS FOR THE Ef, EJ;, aNp Ej;
(ScALAR) MODES OF A STRIP WAVEGUIDE

Methods E} Ef,  E; (Scalar) Birefringence
Equation (9) 0.2939 0.2608 0.3030 0.0331
Effective-index  0.2939 0.2603 0.3026 0.0336
Marcatili 0.2938 0.2603 0.3025 0.0335
Finite-difference 0.2959 0.2617 0.3071 0.0342

2a=3 um, 2b=1 pm, n;=3.44, n, =340, n;=10, A=1.15
pm. .
Birefringence is the difference in P? between the Ef; and E},
modes.
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Fig. 2. Dispersion curves for the Ef; and E}; modes of a strip wave-
guide with n;=3.44, n,=3.40, and n,=1.0 for different values of
aspect ratio a /b.

evidence comes from the observation that the same finite-dif-
ference method, when applied to a slab waveguide [12], overesti-
mates the propagation constants by amounts comparable to the
discrepancies between the finite-difference solutions and the
effective-index solutions shown in Table I. (The finite-difference
solutions for P2 are 0.4319 and 0.3863 for the TE, and TM,
modes of the slab waveguide [12], respectively, in contrast with
the exact values 0.4273 and 0.3851.)

Equation (9) has been checked extensively by comparison with
results from the effective-index method and Marcatili’s method.
In general, the results calculated from (9) agree very well with
reference data over the whole guiding range of V. Significant
discrepancies occur only in situations where the aspect ratio
a /b and the index ratio A, /A, become impracticably small. As
an example, the dispersion curves for the Ef; and E{; modes of
the waveguide with the refractive indexes mentioned earlier are
presented in Fig. 2 for various values of aspect ratio. The results
obtained from (9) are hardly distinguishable from the effective-
index solutions, which are therefore not shown in the figure.
The aspect ratio required for achieving a specified modal bire-
fringence for the fundamental mode is plotted in Fig. 3 as a
function of V. As shown in this figure, the aspect ratio for zero
birefringence, calculated from (11), decreases from about 1.85
toward 1.26 with increasing V, in agreement with (13). It is also
obvious from Fig. 3 that-the change in birefringence with aspect
ratio decreases with increasing V. For a given positive birefrin-
gence, a minimum aspect ratio exists at a finite V.
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Fig. 3. Aspect ratio required for achieving a specified modal birefrin-
gence B in a strip waveguide with n;=3.44, n,=3.40, and n;=1.0. B
is the difference between the normalized propagation constants of the
Ef, and E}; modes.

IV. CoNCLUSION

A simple and accurate relation has been derived to describe
the dispersion characteristics of a strip waveguide. Apart from
providing a much more efficient way for calculating dispersion,
this relation brings out explicitly many physical properties of the
waveguide and should be useful for the study and design of strip
waveguides. A simple application of this relation has revealed
an interesting property of the waveguide, namely, that it is
always possible to make the two polarized modes of the wave-
guide degenerate by using an appropriate aspect ratio for the
strip.
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Microwave Measurement of the Dielectric
Constant of High-Density Polyethylene

Karlheinz Seeger

Abstract —By applying a new microwave technique which involves
observing interference fringes in transmission, metallizing the sample
faces adjacent to the waveguide, and thus using the sample as a
dielectric-filled metallic waveguide, the real part of the dielectric func-
tion of high-density polyethylene has been determined as 2.34 at room
temperature and 2.29 at liquid nitrogen temperature (77 K) for the
frequency range from 26.5 to 40 GHz.

I. InTRODUCTION

Interest in the dielectric behavior of polymers at microwave
frequencies has usually been focused on the loss tangent be-
cause of low-loss technical applications [1]. Not until quite
recently has a precision method for the microwave measurement
of the real part of the complex dielectric function been applied
to semi-insulating semiconductors [2], [3]. In the present paper
the real part of the diclectric constant, e, of high-density
polyethylene measured by this microwave interference tech-
nique will be reported. Since the loss tangent of this polymer is
only of the order of 10™%, the variation of € over a microwave
frequency band is of the same order of magnitude, which means
that this variation can be neglected in the evaluation of an
interference spectrum, quite similar to the case of high-resistiv-
ity semiconductors.

II. EXPERIMENTAL TECHNIQUE

The experimental technique has been reported in detail in [2].
Therefore it suffices to explain it in principle only.

The sample with plane-parallel front and rear ends com-
pletely fills a rectangular waveguide for a length d. A Q-band
waveguide for 26.5 to 40 GHz has been found convenient for
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